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Summary

This report describes an effort at NASA Lewis Research
Center to use artificial neural networks to automate the align-

ment and control of optical measurement systems. Specifi-

cally, it addresses the use of commercially available neural
network software and hardware to direct alignments of the

common laser-beam-smoothing spatial filter. The report pre-

sents a general approach for designing alignment records and

combining these into training sets to teach optical alignment
functions to neural networks and discusses the use of these

training sets to train several types of neural networks. Neural
network configurations used _nciude the ad_ 'A'_eresonance

network, the back-propagation-trained network, and the

counter-propagation network. This work shows that neural

networks can be used to produce robust sequencers. These

sequencers can learn by example to execute the step-by-step

procedures of optical alignment and also can learn adaptively
to correct for environmentally induced misalignment. The

long-range objective is to use neural networks to automate

the alignment and operation of optical measurement systems
in remote, harsh, or dangerous aerospace environments. This
work also shows_that_whe_n neu_ral networks are trained by a

human operator, training sets should be recorded, training
should be executed, and testing should be done in a manner

that does not depend on intellectual judgments of the human

operator.

Introduction

This report describes an effort at NASA Lewis Research
Center to use neural networks to automate the alignment and

control of optical measurement systems. This project, which

was supported by the Earth-to-Orbit Propulsion Instrumenta-
tion Working _3_upo-f NASA,w_6e[gu -n in 1989 because of

a need to make optical measurements near an operating test

bed of the Space Shuttle Main Engine where the environment

is intolerable for humans.

Aerospace measurement environirients can be Chara_'fer=
ized in terms of two challenges. The first challenge is the

optical access of areas of interest in the experiment, rig, or

facility. The Se_cbfii_challenge, the one that we address in this

report, is that hands'on alignment, adjustment, and control is
often difficult or impossible. Although hands-on adjustment

of these systems is frequently necessary during a test, human

safety considerations often prevent access during testing.

This may mean, for example, that a test must be shut down

for a period in order to do the required adjustments. Obvi-

ously, it would be less costly and far more efficient to auto-

mate these adjustments.
For a typical alignment the usual procedure is for a human

operator to control the illumination of an extended region
visually by using the beam pattern for alignment clues. This

procedure is not necessarily trivial. For example, four mirror

mounts, each with 3 rotational degrees of freedom, have 12[

or 479 001 600 possible orderings of an alignment sequence

involving all 12 degrees of freedom. A human operator, of

course, imposes many constraints to restrict the number of

possible moves. A particular mount can be aligned to center
the beam on another mount and then locked. Several moves

can be made sequentially to move the hot spot of a beam in a

horizontal direction only. Nevertheless, even a simple optical

measurement system may require frequent random adjust-

ments of 3 to 6 degrees of freedom. A recent test of the

simplest off-axis reference-beam holography setup, with

components already laid out, required between 50 and 100
translational and rotational motions to bring the setup into

alignment.
Solving the problem of automated alignment then requires

automating the learned human skill of pattern-directed opera-

tion of a complex system of controls. An approach to this

problem has recently become available. This approach
involves a method of parallel processing referred to as an

artificial neural network (ref. 1). As will be discussed later,
an artificial neural network can learn to map a general set of

input patterns into an appropriate set of patterns of output
control actions.

The advantage of using a neural network is that, like a

human operator, it can learn an alignment procedure,
a control law, or any other mapping by example. It is not

necessary to discover a mathematical representation of the

mapping by human analytic processes. The human operator

need only know by experience a representative set of input

patterns and output control information. Such a set of pat-
terns and information is called a training set. However, the

procedure is not quite that straightforward: the person train-

ing the neural network must know or discover the composi-

tion of the input pattern. Part of this work consisted of

discovering an optical alignment paradigm (ref. 2).



Applicationof neural networks to the optical alignment
problem consisted of several tasks:

(1) Study of the theory of neural networks and their

application to optical pattern recognition (refs. 3 and 4)
(2) Acquisition of neural network development systems

(refs. 5 to 7)

(3) Selection of a benchmark component for automated

alignment-- the spatial filter commonly used for laser

beam smoothing and signal isolation (ref. 8)

(4) Generation of human-directed alignment records to

use for training neural networks or several systems of
neural networks

(5) Testing the systems of neural networks-- comparing

neural-network-directed alignments of the spatial filter
with human-directed alignments

The spatial filter was chosen as a benchmark component
because it is a simple component whose alignment is pattern

controlled. Its theory, models, and pattern visualization were

important for this effort, but the neural network procedures

and alignment paradigm that resulted are considered to be

quite generally applicable.
The types of neural networks used included the back-

propagation-trained network (BPN) (ref. 9), the counter-
propagation network (CPN) (ref. 10), the Euclidean

Preclassifier (ref. 11), and the Adaptive Resonance Tech-

nique 2 (ART2) (ref. 12).

This report discusses these networks in the order men-

tioned. The theory of the laser-beam-smoothing spatial filter

is given in appendixes A and B, and a list of symbols is given
in appendix C.

Automation of Optical System

Alignment

Description of Alignment Process

The spatial filter (fig. 1) and its alignment are understood,

in principle, from the science of physical optics. Figure 1 is

a photograph of a disassembled spatial filter of the type used

to clean up laser beams in the laboratory. Figure 2 shows the
assembled spatial filter, which consists of a micro-

scope objective (typically 20x) that focuses a laser beam onto

a pinhole (typically 10 _-n in diameter). Scattered light (from

dust particles on the lenses, for example) does not generally
pass through the pinhole. An aligned spatial filter thereby
filters the scattered light from the laser beam.

A person learns how to align these spatial filters with some

practice. There are two alignment procedures required:

(1) centering the laser beam on and making it coaxial with

the microscope objective and (2) aligning the pinhole with
the microscope objective. The first procedure, which is done

Figure 1 .--Disassembled spatial filter assembly.

Figure 2.--Spatial filter assembly.

with the pinhole removed, can be complex; it may require the
adjustment of several mirrors, prisms, or beam elevators.

Only the second procedure is considered for automation in

this report.

For the second procedure, the pinhole is inserted, and the

laser beam is centered and focused onto it. The spatial filter

assembly (figs. 1 and 2) supports the pinhole in an X-Ytrans-

lation stage with micrometer adjustments. The microscope

objective is in a separate Z-axis stage for focusing. This

Z-axis stage is the large, knuried cylinder shown in figures 1

and 2. These three controls allow the focal spot (beam waist

for gaussian laser beams) to be centered on the pinhole. If

the first alignment procedure has been done correctly, th e X,
Y, and Z controls can independently adjust the X, Y, and Z

coordinates of the focal spot relative to the center of the pin-
hole. On rare occasions, the total Z-motion might be as large

as 1000 lam, and the X- or Y-motion as large as 300 pm for the
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spatial filter containing a 20x microscope objective and a
10-1xm pinhole. Final adjustments, however, might be as

small as 1 _un.
The human approach to executing this second procedure

varies quite a bit. Appendix A contains the theoretical inter-

pretation of the beam pattern observed. For the following

description, which we believe is typical, albeit inexact, fig-

ure 3 shows the appearance of the laser beam at the various

stages of alignment.

Initialappearance Region"A"
(focusis appearance

backed off) (diffractionrings)

Patternprior to
focus adjustment

Typical result after Region "B" Aligned filter
focus adjustment pattern

Figure 3.--Appearance of filtered laser beam at selected stages of
alignment process for spatial filter.

First, the room lights are turned off, and the focus is

backed off toward the laser. This process allows the laser

beam to fill the pinhole. Then the output of the filter is pro-

jected onto a white card for viewing. Internal reflections can
occur, and faint multiple beams might be observed. The
main beam will have a bright spot and a pattern of concentric

rings, but initially this pattern may be too faint to be seen. In
fact, internal reflections may produce beams that are brighter

than the main beam. An experienced person can still tell the
difference between the main beam and the internal reflec-

tions. The region A model of appendix A is an attempt

to describe the pattern of this main beam (region A

and region B are used to designate regions of alignment

space). Typically, the human operator begins centering the
main beam by moving the X or Ycontrol the same direction
that the beam is to move. Usually, the largest X or Yerror is

corrected first. The beam usually brightens considerably dur-

ing these corrections, and the ring pattern becomes visible.
Internal reflections become negligible.

Once the beam is centered, the focus is then moved toward

the viewing card. The beam's reflection from the card nor-

mally will move away from the center during this process,
unless the pinhole is exactly centered on the beam. In addi-

tion, the beam normally will become fainter. The focus or
Z-axis control is operated until the beam is near the edge of
the field of view or until the beam starts becoming too faint.

The centering procedure is then repeated with the X and Y

controls followed by the focusing procedure with the

Z-control. At some point, the appearance of the beam will

change significantly. The pronounced ring pattern may dis-

appear, the beam may become asymmetrical, the central spot

may appear to be larger and softer, or the beam may brighten

substantially. The region B model of appendix A represents
this behavior. Essentially, in this region the beam is too small

to fill the pinhole uniformly. Although the spatial filter is

almost aligned, the beam patterns vary much more for a

given control change than they do in region A. In region B,
beams that are apparently off center or asymmetrical require

slight adjustments in X or Y. Beams that are essentially

circular require slight adjustments of Z. An experienced per-

son learns to recognize the action required by a particular

beam pattern. At some point, the beam will appear the same
as an unfiltered gaussian laser beam. The filter is then

aligned, and the human operator stops making adjustments.
The task of automating the alignment of an optical system

can be approached in various ways. In each, a given input

(expressed as a vector including the present state of the sys-
tem, past alignment actions, and estimates of future output)

produces the output (expressed as a vector including control

settings) that is used to direct the next action by the effector,
which can be human or electromechanical. The object is to

always move closer to the aligned state. The process of

examining the current state of alignment and performing an

appropriate alignment step is repeated until the alignment is

complete.
One way to automate the alignment process would be to

model the process theoretically. Such a model might be used

directly in a control system as a transfer function. Another

approach would be to discover a linear mapping between the

whole range of possible input vectors and corresponding out-

put vectors. A third method would be to store the pairwise

input-output data in a lookup table. The controller would sim-

ply access the desired output control from the table. Severe
difficulties exist with all of these methods. The next sections

briefly detail the methods and describe the difficulties.

Theories and Models of Spatial Filter Alignment

We have a theory and models of the spatial filter

(appendix A) and a model for visualizing the alignment pro-
cess (appendix B). What prevents us from developing align-

ment control systems from these theories and models alone?

There are many reasons, but the key words are "credibility"

and "practical difficulty." Some of the reasons follow:

(1) The models are based on a diffraction integral theory

that ignores coupling between components of the electromag-
netic field.



(2)Thediffractionintegralsthemselvesaresimplifiedtoa
paraxialorsmall-angleapproximation.

(3)Thespatialfiltermodelisassumedtohavethinlenses,
zero-thicknessapertures,andloss-free,reflectionfree,inter-
nalsurfaces.

(4)Thetheory(eqs.(A1)to(All)) isill-posed.Thebeam
patterniscomputedfromthecontrolinformation(misalign-
mentCoordinates),whereastheobjectiveistoobtaincontrol
informationfromthebeampattern.

(5) Themodelsareapproximationsofthetheoryitself,
Twodistinctalignmentregionsareproposed,andthenature
ofthetransitionbetweenthetwoisignored.

(6)Thenumericalcalculationsfromthemodelsarecom-
plicatedandrequiresignificantcomputertime.

(7) Theapplicationof thetheoryassumeslineardetectors
(thebeampatternsmaydiffer,althoughthedetectorreadouts
arethesame);hysteresis,backlash,andothernonlinear
mechanicalerrorsarenotconsidered.

Thisdiscussionappliestothespatial filter, but it is charac-

teristic of all attempts to use physical theories and models to

understand complex systems. Ill-posedness, numerical com-

plexity, nonlinearities, simplifications, and an incomplete

understanding of the human-machine interface greatly
devalue this exercise. Nevertheless, some physical under-

standing of the complex system to be controlled is essential

to train the neural networks discussed in the following

sections. As an example, we show in appendix B that, theo-
retically, the laser beam and spatial filter can be made dimen-

sionless. This discovery suggests that the training sets for the

neural networks can be supplied in dimensionless form,

thereby making the neural networks trained by them appli-

cable to more general laser-beam, spatial-filter combinations.

Linear Mappings and Table Lookup

The process of automating the alignment of a spatial filter

can be considered as executing a sequence of nonlinear map-

pings. Linear mappings and transformations (ref. 13), by

contrast, have numerical evaluations represented by the
matrix equation

b : Wa (1)

where a and b are column vectors with numbers of compo-

nents m and n, respectively, and Wis an n by m matrix. The

use of equation (1) in science or engineering implies a linear
system or a system that can be linearized.

One possible solution to a mapping problem is to use a

table lookup procedure to compare an input pattern with a

representative collection of input patterns and to interpolate

in a table of input-output pairs to determine the output con-

trol information. The major drawback with table lookup is

that entries in the table are considered to be independent.
The training and memory requirements can be quite large.

As an example, consider one of the laser-beam, spatial-filter

combinations used for the work reported herein.
This combination consisted of a 30-mW helium-neon laser

and a spatial filter with a 20x microscope objective and

a 10-I.u'n pinhole. As stated before, the total ranges of the
X, Y, and Z mechanical motions were contained in a volume

approximately 300 _ by 300 I.u'nby 1000 pro. The mechanical

resolution in X, Y, or Z was about 1 pm, so there were about

90x106 distinct positions. Each position had a beam pattern.

Labeling the beam patterns based on the 1024-pixel, 8-bit

characterizations of the beam patterns (the resolution used in

appendl-x-BTor visualization) would require 92.16 GB of

address space. Storing, for example, a 2-bit representat- ion=of
the control to be selected for operation (X, Y, or Z) would then

require an additional 23.04 GB of storage space. For

adequate table lookup results, the whole range of input space

would have to be covered with the stored alignment records.
The obvious objections to this method are that no human

operator would ever collect 90x106 training examples for any

system and that memory requirements are unacceptably i
large.

The table lookup method can be modified to use less data.

The modifications, which are described in terms of a lookup

_table Space, wherein input vectors are called points, folloW:

(1) Eliminate points that have zero probability.
(2) Divide the space into volume elements that are sized

to be visited with equal probability.

(3) Determine an exemplar for each volume element.

(4) Develop a lookup algorithm that associates a point
with its exemplar.

(5) Read out the output pattern associated with the
exemplar.

(6) Interpolate between outputs, particularly if a point has

a nonzeroprobabiiity of being associated with more than one

exemplar.

The objection to using this procedure is the same as for

using theories and models: detailed, specialized knowledge
is required.

Artificial Neural Networks

Introduction to neural networks. - Neural networks are a

new approach to a very old problem: extracting and imple-

menting the mapping or transformation of a set of ifiput vec-
tors into a set of output vectors. That operation is expressed
in functional form as i
=- it

=

b = f(a) (2)

The components of an input vector a might consist of sensor
values and results of operations on sensor values from times

in the past, components of the output vector b or results of
operations on components of the output vector b from times



in thepast,and model-derived estimates of future compo-
nents of b. The components of an output vector b might con-

sist of control settings and sensor values. The function f

represents a general combination of processes. In a sense,
discovering or implementing f is a primary task of both

instrumentation and controls personnel. However, measure-

ment errors and noise change the task somewhat: the objec-

tive is to discover or to implement an fthat minimizes the

mean-square-error E between the mapping or transformation

and the set of target output vectors. In general, we want to

minimize the expression

E = (Ib- f(a)[ 2) (3)

where < > represents an expectation value.

The discipline of artificial neural networks does not yet

have standard terminology (ref. 14). However, neural

networks can be viewed as special cases of networks of inde-

pendent, parallel operating, interconnected processors. The

term "parallel distributed processing," which is the title of a
fundamental reference (ref. 3) also describes the discipline.

This report adopts the operational definition that is shown in

figure 4.
Artificial neural networks are biologically inspired

(refs. 15 and 16). The terms "synapse," "axon," and "neu-
ron" are used occasionally as in figures 4 and 5. A neuron, or

node, has weighted inputs or synapses. In software simula-

tions these weights, by convention, are assumed to belong to

the node, and they are part of its local memory. A node sums

its weighted inputs. In addition, during training the node can
be allowed to add a bias term to that sum. A major change

from the linear transformation is that the output or axon value

is a nonlinear function of the weighted sum. The important

property of the nonlinear function (sometimes called an acti-

vation function) is that the network generates internal degrees
of freedom. The nonlinear function used in the work

b ha _ OUTPUT VECTOR

OUTPUT CONNECTIONS
(Axons )

_-41------- WEIGHTED INPUT CONNECTIONS

(S/NAPSZS)

a_.._l-- INPWI _ VECTOR

Figure4.--Unear transformationdescribed by neuralnetwork
terminology.

.?S
(OUTPUT NODI)

0 _ _ _LTn_S w_T.TRANS._S_ON\ \ "ROPOR'ZONALTO "_t' w1'' w1'

_ OPTTCAL FIBERS

l __z_pu, w_s P_OPO,TZom"
I TO a t, &=, a 3

Figure 5.--Concept of optical realization of figure 4. One output
node shown.

reported herein is deterministic, or reversible. The output

(axon value) usually is transmitted to other nodes, but it also
can be fed back as a weighted input to its own node. It can

have external inputs for resetting it or for applying external
data. Nodes can fire or put out new information synchro-

nously or asynchronously. Interconnections can be fairly

arbitrary.
The internal degree-of-freedom generating ability is

responsible for the very complex behavior of most nonlinear

systems. A nonlinear system with a few input variables acts
like a linear system with a much larger number of variables.

The nonlinear mechanics or fluid dynamics of these systems

is complex because of this phenomenon (ref. 17). Feed-

forward networks use this phenomenon to perform the

general mappings given by equations (2) and (3). The sum-
mations and nonlinear activations constitute an engine, and

the weights constitute the knowledge, control information,

and program for the engine. Calculating the weights effi-

ciently, accurately, and stably is a primary topic of research

and development. This report is concerned with the use of
commercially available neural network systems to learn and

direct optical alignment. The algorithm used to learn the

training set is a weight-calculation algorithm.
The neural-network generalization of the linear mapper

discussed previously is called a feed-forward network. Such

a network (fig. 6) is arranged in layers of nodes, where a

layer receives inputs only from the previous layer and trans-

mits outputs only to the next layer. In addition, unlike the

linear mapper, the feed-forward network uses multiple layers.
There are a number of modifications of this architecture in

use, but the architecture just described allows us to explain

the general value of neural networks.
To cause a neural network to learn, the training program

presents input and output vectors to the network one pair at a
time. For each iteration, the network is allowed to adjust the

connection weights using its particular weight-calculation

algorithm. The abstract objective is to determine weights W
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(a) Network. (b) Sample neuronin
hiddenlayer.

Figure&--Feed-forward artificialneuralnetwork,

that no longer require adjustment as the entire set of input/
output pairs is applied.

Nonlinear differential equations or nonlinear difference

equations (for the discrete time case) can be used to describe

neural networks as functions of iteration number. Equa-

tions (2) and (3) for stable mappings (supposing such map-

pings exist) should be changed to the equations

b = g(a,W) (4)

and

E = (b- g(a,W)12 ) (5)

where W is an array of weights whose values are to be deter-

mined by training. If the weights are varied or stepped,

a differential equation or difference equation replaces equa-
tion (4). The differential equation is given by

_t = g a, d--t-' _ b (6)

where both a and W are allowed to vary with the iteration

number. When b is fed back as an input to the neural net-

work, it becomes an argument of the nonlinear function g.

The problem stated here is an inverse problem; it is gener-

ally ill-posed even for linear systems such as those encoun-

tered in computed tomography (ref. 18). Fortunately, the

accuracy or uniqueness of the weights is not important for the

alignment problem as long as they generate correct output
vectors.

There are two approaches to developing neural-

network architectures and weight-calculation algorithms.

The first and oldest approach is phenomenological: take
clues from biology and cognitive science (the psychology of

learning). This approach is very much aligned with artificial

intelligence. An example is the Adaptive Resonance Tech-

nique 2 (ART2) that we used in our alignment studies and

which we discuss later. References 3 and 15 discuss the psy-
chological and biological viewpoints thoroughly.

The second approach is to apply techniques from the

dynamics of nonlinear systems (ref. 17). The most common

approach defines an energy function (sometimes

referred to as the "cost function" or "Lyapunov function") in

terms of the weights. The objective is to design or discover

an artificial neural network and energy function where the

energy function has minima. Modified steepest-descent tech-

niques are used to determine the weights that correspond to
the energy minima. Feed-forward networks are trained

by minimizing an energy defined as the mean square

error between the generated outputs and the training outputs
as in the expression

e = E (bcw) t,,)2 (7)

where the sum is over the N samples in the training set. The
vector bt is a training vector, and the vector b is the actual

output vector resulting from weights W and a training input

at. Topologically, E is imagined to be a surface in a space
whose dimension equals the number of weights. The surface

has dimples or valleys that represent the minima.

There are two poss_le complications. The first is that E

can have multiple minima, so a solution for Wmay not repre-

sent the lowest of the minima. The second complication is

that the algorithm may not converge, and the solution may
oscillate wildly. Therefore, the trajectory of a point in the

weight's phase space (the space of W and dW/dt or W and its

increments) may be chaotic (ref. 19). Artistic adjustments are

sometimes necessary to control these complications during a

training procedure. The dynamics of nonlinear systems, in
general, has become a topic of major research interest. The

energy minimization method is the basis for the back-

propagation algorithm. That algorithm was used for our
alignment study and will be discussed later.

The error (eq. (7)) cannot be expected to decrease to zero

for an actual training set, even when convergence is to the

lowest minimum. This phenomenon can be understood in

that training sets, in general, are characterized implicitly by a

joint probability function or joint distribution function P(ba),

where the concatenation ba means that the components of b
and a are the arguments of P. The use of this function

accounts for the facts that (1) human generators of input/
output pairs do n0t execute exactly the same control actions

b every time they encounter essentially the same input pat-

tern a and (2) that there are groups of scattered input patterns
a which result in essentially the same control action b.

Statistical analysis of training sets can be very compli-
cated. Inputs are not necessarily independent of one another;

outputs are not necessarily independent of one another. Joint

probability distributions of components of a and b are not
necessarily normal. Nevertheless, neural networks trained

with statistically simple training sets perform in a statistically
optimum manner (ref. 6). That is, the neural networks will



(1) Minimizethemeansquareerrorofequation(3)
(2) ExhibitBayesianperformance(ref.4)
(3) Produceoutputswith themaximumlikelihood

ofbeingcorrect(ref.4)
Onewaytoperformastatisticallysimpletestofaneural

networkistogeneratetrainingsetswherethecomponentsof
aninputa belong to one of several multivariate normal distri-

butions (ref. 20). The bivariate normal density for an input

vector a = (al, a2) is given by the equation

'1
f(al ,a2) = 1 exp

2_o,o2_ - p2 2(1- p2)

(a I Ul) 2 (al- Ul)(a 2 - u2)x 02 2p 0102

(8)

where 0.1 and 0"2 are the standard deviations of the two com-

ponents, ul and u2 are the means of the two components, and

p is the correlation coefficient. The function.f is a probability

density function.
Multivariate normal distributions for any number of com-

ponents are defined in reference 20. Output vectors can be

defined in at least two ways. A separate output node can be
associated with each distribution, or the output vector can

contain a binary code of the distribution. For example, the
first and fourth distributions of a four-distribution training

set could be designated with output vectors (1, 0, 0, 0) and

(0, 0, 0, 1) or with output vectors (0, 0) and (1, 1). Training
consists of associating each input vector with its most prob-

able distribution and executing one of the training approaches

discussed earlier. Testing is based on the recognition that
the normal distributions overlap. An input vector has a non-

zero probability of belonging to any distribution. One test

procedure would be to

(1) Use a random number generator to select the compo-

nents of the input vector a.
(2) Compute the probability densities that a belongs to the

various distributions.

(3) Select as Bayes winner the distribution associated with

the largest probability density.

(4) Use the neural network to select a distribution.

(5) Count a difference between the neural network winner

and the Bayes winner as an error.

(6) Repeat this process a large number of times.

(7) Compare the measured number of errors with the num-

ber predicted from the Bayes rule.

If P(a/O is the probability density that a is associated with
the winning distribution i, then the predicted number of

errors after a large number of tries is given by the sum of

ratios

(9)

The first sum is over a large number of randomly selected

input vectors a. The Bayes rule is applied by assuming that
the distributions are present with unity probability. We com-

pute the probabilities that a is caused by each distribution,
and we select as winner the distribution with the largest prob-

ability. We then use the Bayes rule to compute the probabil-

ity that given a, the winning distribution is i. We subtract this

result from unity to calculate the probability that the losing

distributions would be caused by a. This process is repeated

for a large number of a values. The sum rounded off is an

estimate of the expected number of errors consistent with the

Bayes rule.
One of the neural network development packages used

(ref. 6) provides demonstration examples of this procedure
for several neural network architectures. In every example,

the performances of the neural networks approach that of the

Bayes classifier. However, the training sets used for optical

alignment will be more complex than those used for these
tests. There will be correlations between different output

components as well as different input components. Distribu-

tions frequently will not be normal. The networks will gener-

ate outputs not in the original training set. Nevertheless, we
make the following general comments without formal

mathematical proof.

Neural networks or systems of neural networks exist to

perform the mappings defined by the minimization of equa-

tion (3). The most important property of these networks is
their ability to generate internally, in some sense, enough

degrees of freedom to meet the linear system's requirement
for linearly independent exemplars. These neural networks

are trained by an iterative procedure that minimizes an

energy function. This energy is defined in terms of a training

set of exemplars; it may be the mean square error between

the exemplars and the outputs. For automated optical align-

ment, the training set is generated by a human operator. The

training is influenced by the idiosyncratic and stochastic
behavior of that operator. Hence, isolated output examples of

the neural network may be erroneous. We must design a sys-

tem to depend on the average behavior of a neural network
and to be resistant to, or recoverable from, occasional bad
directions. Because neural networks are complex nonlinear

systems, hard to interpret, sometimes chaotic behavior might

occur during the training process.



Theuse of neural networks to implement mappings
appears straightforward at this point. However, once the net-

work is trained, there is still the problem of executing the

electrical and mechanical alignment. Before that problem
can be tackled, however, and even before the network can be

trained, the architecture of the training set itself has to be

designed. What clues does a human operator use to select an

alignment step? What output information is necessary to

execute the alignment step? What output information is used

to select a next alignment step? Clearly, knowing something

about optics and optical alignment is important. Neural net-

works cannot replace expert knowledge entirely. The design

of training sets for optical systems, and for optical alignment
in particular, is discussed in the next section.

Although MaxwelI's equations are linear in the electric and
magnetic fields, classical optics produces many nonlinear

processes. Examples are

(1) Gain saturation and feedback in optical cavities

(2) Nonlinear Constitutive relations

(3) Nonlinear sensors, detectors, and recording materials

(4) Ray tracing

(5) Nonlinear practices in data handling
(6) Alignment, adaptation, and control

(7) Acousto-optic and electro-optic switching

(8) Photometry and physiological optics

(9) Nonlinear mappings from physical causes to optical
effects

Nonlinear processes complicate the use of optics for study-
ing linear phenomena. One viewpoint of neural networks is

that they make nonlinear activities "transparent to the user."

The optical alignment process is a very good test case. It

has the potential to involve all the nonlinearities mentioned

previously. This process also tolerates the property of a

trained neural network being correct on average. Because

alignment is accomplished in a series of steps, a single erro-

neous step need not destroy the entire process.

Back-propagation-trained networks. - Back propagation
refers to a variety of algorithms used to train feed-forward net-

works of the kind shown in figure 6. These algorithms find the

minimum of an energy function expressed in weight coordi-

nates. The method is essentially an incremental steepest-

descent search. Damping in the form of so-called momentum

terms, smoothing terms, or averaging is added to prevent oscil-

latory, or even chaotic, trajectories.

The energy function mentioned is the mean square error

between the actual outputs of a feed-forward network and the

corresponding training outputs. A good derivation of the

unmodified algorithm is provided in reference 4. This algo-

rithm treats weights in the output and hidden layers slightly
differently. The unmodified algorithm is executed one train-

ing record at a time. The notation varies from reference to

reference. The algorithm for updating the weights connect-

ing the output layer with the adjacent hidden layer is given by

the equations

wb÷t=wb+ (10)

where

t_i = f'(si) (bti - b i) (11)

and where s i is the total weighted input at output node i, lj is
the output of node j in the adjacent hidden layer,/'is the non-

linear activation function, b i is the output of output node i,

bti is the training output for node i, the superscript t is an it-

eration number, and tx is the learning rate. Note that 5i

depends on the derivative of the error. The total weighted
input to output node i can include a bias term. The bias term

is thought of as a weight times a unity input.

Equation (12) redefines 5 for the calculation of weights for

the adjacent hidden layer and subsequent hidden layers:

8, _-r(,,)Es,
i=1

(12)

The 5's in the sum are from the previous layer; the weights

are the old (nonincremented) weights from the layer above.

Note that the learning rate tx might vary from one layer to the
next.

The application of the algorithm is summarized as follows:

(1) Apply an input vector.

(2) Calculate the weighted inputs si to the nodes of the

next layer.

(3) Use the activation function to calculate the outputs I i
of the nodes.

(4) Calculate the derivatives f'(s) of the activation func-
tion at each node.

(5) Continue until calculations produce an output vector b.

(6) Use equations (10) and (11) and the training vector bt
to calculate 5i and the increments in weights.

(7) Substitute the 5i calculated in step (6) into equation (12)

to calculate the 5k in the next layer.

(8) Substitute the 8/_calculated in step (7) into equation (10)

to calculate the increment in weights.

(9) Repeat steps (7) and (8) to propagate the calculation of

weight increments backward through the network.

(10) Update the weights and execute the process for the
next record.

This bare algorithm may work in some cases, but it is

likely to lead to erratic behavior. One solution is to calculate

the weight increments for all training records and to average



these increments before updating the weights. This approach

constitutes a steepest-descent search for an energy involving

the entire training set and is the correct approach implied by

equation (5). A second solution is to add a momentum term

proportional to the last increment:

The purpose of these steps is to prevent the weight space

trajectory' from deviating drastically from the average; the

trajectory is pulled toward the trend established by the previ-
ous increments. The commercial package identified by refer-

ence 6 uses a slight modification of the momentum principle.

The previous increment is multiplied by a coefficient 13,and
the learning coefficient (x is multiplied by 1 - 13. This tech-

nique is called smoothing, and I] is called the smoothing
coefficient. The commercial package in reference 5 was used

with momentum, and the commercial package in reference 6

was used with smoothing.

When it did give adequate results, the back-propagation

algorithm was slow to converge. Frequently, between 10 000

and 100 000 passes through the training set were used. The

parameters were changed during training. Training might
start with (x = 0.4 and _ = 0.8 and end with (x = 0.05 and

13= 0.4. The back-propagation algorithm was able to learn
individual alignments fairly well, but was unable to perform
well when trained with the complete training sets.

Counter.propagation networks.- The counter-

propagation network (CPN) (refs. 6 and 10) attempts to use the

neural network approach to map equation (2) by table lookup.

One version (ref. 6) uses a neural network to adaptively learn

a table, perform lookup, and interpolate. CPN embodies its in-
ventors' philosophy of how table lookup should be executed.

The objectives and operations of CPN can be understood

by adopting a non-Euclidean geometrical viewpoint. We
start with a set of records of the type R = (I, 7'). The input
vector I has seven elements for the spatial filter example, and

the training vector T has five elements for the spatial filter

example. Now, imagine that we have a seven-dimensional
Cartesian coordinate system. The input vectors can be plot-

ted in this space, and a particular grid point in this

hyperspace may or may not represent a realistic input vector.
This problem was discussed in the Linear Mappings and
Table Lookup section. Figure 7 shows mechanical align-
ment errors for members of a training set. Now, imagine that

we perform the following operations:

(1) Choose a volume in the space of ! that contains the

training set.
(2) Note that the volume will contain a finite number N of

grid points and that these points may or may not be close to

training set vectors.
(3) Now, distort the Cartesian grid in the volume.
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(4) Pull each grid point into the midst of a group of input
vector points so that

(a) An input vector belongs to a grid point if its

Euclidean distance from that point is smaller than its

Euclidean distance from any other point.

(b) Each of the N grid points has about the same
number of input vectors.

(5) Now, average the training vectors T associated with

each of the N sets of input vectors tied to a grid point and

associate that average with the grid point.

Steps (1) to (6) create a table. To perform a table lookup

(1) Generate ala input vector I.

(2) Determine the nearest grid point by Euclidean
measure.

(3) Read the training vector average entered for that grid
point.

The reading in lookup step (3) is the estimate of the
mapping.

This procedure allows only N levels: one for each grid

point. Interpolation can be used to eliminate this quanti-
zation:

(1) Determine the n nearest grid points and their Euclid-

ean distances Si.

(2) Evaluate a weight factor for each grid point given by

ei = + _,_ (14)

where r is usually equal to "1."

(3) Average the entries at the grid points by using the

weight factors in step (2).

The interpolated value in step (3) is now the estimate of the
mapping.

Essentially, CPN is a neural network that executes these

operations. If we use the geometrical metaphor, each grid

point is represented by a node, or neuron, in a layer called the

Kohonen layer as shown in figure 8. The components of the

grid point associated with a node are represented by a weight

vector W. Every Kohonen node is fully connected to the
input layer because each node must measure its Euclidean

distance ]W-/l from the iriput Vector. average values of

the training vectors associated with each Kohonen node are

stored in a second layer called a Grossberg layer. The num-

ber of nodes or neurons in a Grossberg layer equals the num-

ber of elements in the training vector T and output vector O.

Each Grossberg node is fully connected to the Kohonen

nodes (as in fig. 8), and each connection is weighted.

_ _-_F_- 0UTPUT VECTOR

u aI_-.91-------- GROS SB ERG WEIGHTS

__ KOHONEN NODES

i I I-,oo,v,o,o 
Figure 8.---Counter-propagation network (CPN).

The Grossberg layer is a linear layer. Each node has a

vector U of N weight values: one weight value for each

Kohonen node. The Grossberg weights corresponding to a

particular Kohonen node are, of course, the averaged compo-
nents of the training vectors associated with that node. In the

noninterpolative mode, the outputs of the Kohonen nodes are

zeros except for the winner (the least Euclidean distance

node), which produces a "1." In this mode, the dot product
of the vector Z of the Kohonen outputs with each weight vec-

tor U of the Grossberg nodes produces the correct output. In

interpolative mode, several weighted winners are enabled;

their outputs are the signals e i defined earlier. The output of

a Grossberg node is then an average of more than one of its
weights.

The counter-propagation network is trained in two stages.

The Kohonen layer is trained first; then the Grossberg layer
is trained. Or in geometrical terms, the space of the input

vectors is distorted first; then the training vectors associated

with a grid point are averaged. Each training process is
iterative.

The Kohonen layer is adapted to the space of input vec-

tors. Each Kohonen node starts out with a weight vector.

The grid is not necessarily Cartesian as in the earlier concep-

tual discussion. The Euclidean distances ]W- II are calcu-
lated for each node, and the minimum is selected as winner.

The winner is allowed to change its weights slightly
to reduce the distance slightly. This fractional change is the

winner's learning rate et. This process can be continued, and

the space will be distorted. However, there is a problem.
Some grid points might not be close enough to an input vec-

tor to ever modify the grid points' weights, and contrary to

the objective, some nodes might end up with many more than
their share of input vectors. This "unconscionable" result is

!6re-vent-e-dby adding a property called conscience. The win-

ning rates of the nodes are monitored, and a node is shut

down if it has too large a winning rate. Other nodes can win

and adjust their weights. A node is not actually turned off.
Instead, bias terms are added to the distances to increase or

decrease them artificially, thereby imparting a win-rate-

dependent disadvantage or advantage.
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Once all the Kohonen nodes are winning at about the same

rate without the need for conscience, it is time to train the

Grossberg layer. In the package used for this work (ref. 6),

Grossberg training occurs continuously. A fraction a of the
difference between the weight and the corresponding compo-

nent of the training vector is added to the weight. The coef-
ficient a, which is called the Grossberg learning rate, is kept

large while the Kohonen nodes are learning. The Grossberg

nodes then effectively flip from one training value to the
next. Once the Kohonen nodes have learned, the learning rate

a is reduced to a very small value. The Grossberg weights

for a particular Kohonen node then tend to the average of the

components of the member training vectors. For CPN, the
effectiveness of the learning process is determined from a

mean square error.

In general, the two architectures performed equally well,

or equally badly, given the same training sets. CPN is inter-

esting because its table lookup, geometrical viewpoint is dif-
ferent from a viewpoint discussed previously. The previous

viewpoint was that neural networks learn general mappings
because the nonlinear activation function effectively trans-

forms the training vectors into linearly independent forms.

The CPN viewpoint is one of learning discriminants (ref. 4).

A point that is enclosed by a volume defined by discriminant

surfaces in some space is considered to be associated most

likely with the properties of that volume. The properties in
CPN are contained in an average training vector. Another

concept is transforming a space to bring spatially separated
vectors into proximity (ref. 4). In reference 4, the layers of

the neural network move different input vectors with essen-

tially the same output into the same volume of some multi-

dimensional space.
Preclassifiers and systems of neural networks.- From a

practical viewpoint, acceptable alignments of the laser-beam-

smoothing spatial filter required using a preclassifier as a step

in creating a system of neural networks. These systems are
discussed next.

Preclassifiers use so-called unsupervised learning to group

vectors into classes; that is, preclassifiers learn classes of

vectors without being taught by example. This means, of

course, that a classification procedure must be built into the
neural network architecture from the beginning. A Euclidean

preclassifier was used for this work.
The Kohonen layer in CPN is an example of a Euclidean

distance preclassifier. Each class has an exemplar, and each
class member has a minimtim Euclidean distance from the

exemplar of that class. Learning consists of setting up the

exemplars for the chosen number of classes, and interroga-

tion consists of classifying a set of vectors. The Kohonen

layer adaptively moves grid points (exemplars) in the space

of the input vectors until the classes (Kohonen nodes) are

uniformly occupied.
For the work discussed herein, classification ended up

being based mainly, but not entirely, on the states of the digital
components of the input vectors. Those components are three

input nodes for the control operated previously and one node

for the pattern class. The control operated previously is none,

Z (focus), X, or Y. The pattern class is region A or B. One sys-
tem, which was trained with the helium-neon training set, con-
tained 13 classes. Those classes are identified in table I.

The training sets constructed from the 13 classes were
used to train 13 BPN's. Thesefeed-forward networks con-

tained a seven-node input layer for the seven-element input

vector, one seven-node hidden layer, and a five-node output

layer for the five-element output vector. A sigmoidai func-
tion, which was used as the nonlinear activation function, is

defined by the equation

1

f(x) - 1 + e-Ax (15)

where A determines the gain. As A increases, the sigmoidal

function approaches the unit step function. Sigmoidal func-
tions were used for all the BPN mappers discussed in this

report.
The commercial package identified in reference 5 per-

formed very well once it was trained. Training times for this

all-software package were very long. Overnight training

sessions were required for some networks. This package is

useful for learning about neural networks. However, the sys-
tems discussed next were trained more rapidly with a

coprocessor-based system (ref. 6).
Back-propagation-trained network and counter-

propagation network using an Adaptive Resonance Theory 2

Preclassifier. - The Adaptive Resonance Theory 2 (ART2)

preclassifier produced classes for the helium-neon training

set that did not differ drastically from the classes produced by

the Euclidean preclassifier. These classes are tabulated in

TABLE 1.- CLASSES FOR EUCLIDEAN

PRECLASSIFIER HELIUM-

NEON TRAINING SET

Class

1

2

3

4

5

6

7

8

9

10

11

12

13

Control

operated

last

NONE"

Y

Z

X

Z

Z

Z

Y

X

NONE h

Z

NONE h

X

Pattern Number of

(region) training

records'

A 15

A 78

A 10

A 45

A 28

B 49

A 19

B 20

B 19

A 16

B 4

A 7

A 37

•Each training record consists of one in ml vector rand one

oulput veclor.

_Beginning of alignment.
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table II. A comparison of table I with table II shows, for exam-

ple, that the Euclidean preclassifier puts all the region A, previ-
ous operation = Y records into a single class of 78 records;
whereas ART2 creates two classes where one class has

57 records and the other has 21 records. Both preclassifiers cre-
ate three classes for region A, previous operation = none records.

The distribution of records between the three classes is slightly

different for ART2 and the Euclidean preclassifiers.

ART2 (refs. 6 and 12) monitors how well input vectors
agree with those supplied in the original training set. It also

embodies a significant philosophy of neural networks. This

philosophy is likely to be important for optical applications;

therefore, ART2 will be discussed briefly even though it was
used only as a preclassifier.

TABLE II.--CLASSES FOR ART2

PRECLASSIFIER HELIUM-

NEON TRAINING SET

Class Control Pattern Number of

operated (region) training

last records'

1 NONE h A 15

2 Y A 21

3 Z A 20

4 Z A 31

5 X A 63

6 Y A 57

7 Z B 53

8 Y B 20

9 X B 19

10 NONE b A 11

11 NONE h A 12

12 X A 9

13 Z A 6

"l_¢htraining rco.)rdcon_,irdsof onc inputveclor andone
outputvector.

_Beginningof alignment.

The following comments might be useful in reading the lit-

erature about the Adaptive Resonance Theory (ART). The
terminology used to describe ART2 in the references differs

from the terminology used so far. As previously mentioned,

nonstandardized terminology is a problem in this field, which

only recently has been used for applications. ART is derived

from ad hoc efforts to combine theories from biology and
cognitive science with artificial neural networks, and its sig-

nificance may be a little hard to understand by those not

versed in neuronal biology. In addition, some people (such

as biologists) may dislike the use of biological terms for arti-

ficial systems.

For example, in ART a layer of nodes with adjustable
weights is called an adaptive filter rather than a layer of neu-

rons, and the nodes are said to use competitive learning.

Competitive learning means that only one node in a group

wins the right to learn during an iteration. In that sense, a

least-Euclidean-distance criterion is competitive learning.

ART attempts to incorporate or emulate in a single system

the formation of a properly scaled Short-term memory from

an input, the comparison of that short-term memory with
long-term memory (bottom-up weights), the selection of a

best long-term memory, the generation of an expected value

for the short-term memory from long-term memory (top-

down weights), a comparison between the expected and

actual short-term memories (vigilance), and a decision based

on that comparison. The decision based on vigilance may be

(1) to accept the triggered long-term memory as correct and

to modify it slightly for the new input, (2) to shut down that

memory node and look for a better match, or (3) to shut

down the active memory nodes and select a new node (class)

in the long-term memory. This process is complicated by

analog computation in several loops, by variable gain factors,

and by stabilities that are established independently, with dif-

ferent time scales, and in different loops. In effect, recall,

comparison, and learning occur continuously- but with dif-
ferent time constants.

ART attempts to add two features not used explicitly for

this project-continuous learning or adaptation and the com-
parison of memory-generated expectations with inputs. The

second feature appears implicitly during the alignment of a

spatial filter as is explained later. In contrast, our systems of

neural networks are designed to learn training sets. Once our

systems are trained, they are used to respond to every vector-

generated input, and they generate an output vector in

response to every input vector. There is no attempt to check

the validity of the output. We assume that a good training set
will be inclusive; therefore, input vectors will fall in the

space of the training vectors. We also assume that a slightly
bad move will not be fatal, but will be corrected in the next

move. These assumptions have proven, so far, to be correct

for spatial filter alignments.
Suppose that there is a chance that the nature of our input

vectors will change. Ideally, we would like to detect that

change and to learn the appropriate input-output combination

as rapidly as possible. The following approach could be con-

sidered. Train two feed-forward networks with the training
set. But for the second feed-forward network, reverse the

roles of the input and output vectors. That is, use the training

set output vector as the input and the training set input vector

as the training vector. During operations, an input vector is
applied to the first network. That network generates an out-

put vector, the output vector is applied to the second network,

and a new vector appears at the system input. Then the two

vectors at the system input are compared. A certain agree-
ment is required as specified by an adjustable vigilance

parameter. The system output is used for control if the agree-

ment is good; otherwise the system is halted and learning is

activated. Agreement, within the error set by the vigilance

parameter, is called resonance. Learning is called adapting
the resonance.

There are significant problems with this procedure. One

problem is that mappings are not one-one. Consider a net-

work that is to learn exclusive OR operation (XOR). Both
(0, 0) and (1, 1) map into a zero output. Which pair should
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be used in the reverse direction? The solution is to iterate the

network twice. Train the reverse network to produce a (1, 1).

Then, a zero output will generate that input. Now, feed the

(1, 1) through again. Everything repeats on the second itera-

tion. The processing loop must be stabilized, and there must

be normalization since signal levels will vary. The nature of

discrepancies must be considered in normalization. A large

error in one node might be a reason to halt the network,
whereas the same total error distributed over several nodes

might not be a reason to halt the network.

Unsupervised learning bypasses a problem with supervised

learning (which is based on input-vector, output-vector train-

ing sets). Systems training with supervised learning will fail

if the training set was not designed correctly or if the training

set does not contain enough examples. Unsupervised learn-

ing or pattern classification, on the other hand, is designed to

accept and learn new patterns. ART is intended for pattern
classification.

There are several ART architectures; ART2 consists of two

versions (refs. 6 and 12). This project used ART2 to assign
the training set records to classes. The vigilance parameter p

was used to determine the number of classes. This param-

eter, which is in the range (0, 1), was compared with an

expression containing the cosine of the angle between vectors

derived from the input and the expected input vectors. Good

agreement between these vectors produces an expression

value close to "1." The value decreases as agreement dete-

riorates. A vigilance parameter that is too large produces too

many classes, and a vigilance parameter that is too small pro-
duces too few classes. The helium-neon training set required

p = 0.98 for 13 classes, and one argon-ion training set
required p = 0.99 for 12 classes. These numbers apply to the

training sets in dimensionless form.
Although ART2 was used primarily for preclassification, it

did detect input vectors that deviated significantly from the

training sets. Processing would halt during interrogation if

the input could not be classified at the training vigilance.

However, this problem did not occur often. The solution was
to reduce the vigilance slightly to allow classification to

proceed.
The classes established by ART2 were used to train both

BPN and CPN networks. In general, a system consisting of

the preclassifier and 12 or 13 BPN or CPN mappers could

learn the training set adequately.

Given a trained system of artificial neural networks, the

remaining task is to test that system with an actual alignment

of the beam-smoothing spatial filter or with a model of that

alignment. Those experimental procedures are discussed
next.

The neural networks discussed here embody the ad hoc or

anecdotal viewpoints of their inventors. However, all the

systems of neural networks tested, regardless of the view-

points of their creators, could learn a training set equally

well, if they could learn it at all. We were unable to train any

single, isolated neural network architecture adequately.

Combinations of neural networks were required to learn the

training sets. We suspect that the design of the training set,

which combined digital and analog representations, may have

been partly responsible.

Experimental Setup and Procedures

Development of Training Sets

Some previous work has been done to develop optical

alignment training sets (ref. 2). The inputs of the first train-

ing sets consisted of the control last operated (X, Y, Z, or

none), the xy position of the beam bright spot on a reflector,
and the average brightness. The outputs consisted of the con-

trol to be operated (X, Y, Z, or none), the new xy position of

the beam bright spot, and an estimate of the new brightness.

The network was expected to learn the following sequence:

zero x and y, reduce the focusing error z subject to the beam

remaining on the reflector, and repeat the process until the

beam brightness equals the previously known maximum.

However, nets trained with this training set became locked in

loops. The trained network would direct an alignment proce-
dure that would return again and again to the same unaligned

condition. The problem was that there are at least two

classes of beam patterns (region A and region B in

appendix A). The control to be operated and the expected
behavior are different for the two classes, even though the

other components of the input vector are the same.

The training set written from a human operator's exem-

plars must include the input clues and control actions actually

employed by the human operator. There is a need to discover

what items to include in the input and output vectors and
when to include them.

Models of how human operators anticipate the outcome of

their actions are applicable to adaptive neural networks. The
difference between the anticipated outcome and the actual

outcome is important in adapting the alignment procedure to

different setups. The personal models of a particular human

operator do not even have to be scientifically rational as long

as they work. Defining personal models probably would

involve an interview process similar to that used in develop-

ing the rules for an expert system.

If it is possible for the input and output vectors to include

all the components in the following lists, an adequate neural-

net-controlled alignment should be possible.

The input vector should contain:

(1) Previous control action and consequences
(2) Beam coordinates

(3) Beam pattern

(4) Beam brightness

(5) Expected consequences of control actions
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The output vector should contain

(1) Control action to be taken

(2) Characteristics to be set (beam coordinates, beam pat-

tern, or beam brightness)

(3) Characteristics to be estimated (again, the beam coor-

dinates, beam pattern, or beam brightness)

The use of neural networks that incorporate item (5) from

the input vector and item (3) from the output vector is part of

intelligent adaptive control and is an area of substantial ongo-

ing research and development (ref. 21). Input item (5)

requires that physical or procedural models be incorporated
in the network, thereby somewhat compromising the concept

of a human-trained-only system of neural networks. The

work reported herein uses only a subset of the features in
these lists.

Training set design for optical alignment.--A major chal-

lenge when using neural networks is the design of an

appropriate training set. This requirement demands an inti-

mate knowledge of the application. In our study, the devel-

opment of an approach to designing training sets for optical
alignment involved some trial and error. Only the final

designs are discussed here.

First, consider the input vector. The previous control

action and consequences are represented by a three-

component vector containing zeros and ones. The possible

values are (0, 0, 0) for the start of an alignment (no previous

control action), (1,0, 0) for previous operation of the z-axis

or focus control, (0, 1, 0) for previous operation of the x-axis

control of the pinhole position, and (0, 0, 1) for previous

operation of the y-axis control of the pinhole position.
The beam coordinates consisted of the x and y positions of

the brightest point on the beam. These coordinates were

measured relative to crosshairs drawn on the diffusely

reflecting card. Initially, the pinhole was removed, and the

beam was centered on these crosshairs. This step, as men-

tioned, is not part of the alignment procedure to be auto-

mated. Then, the pinhole was inserted, and the spatial filter

was aligned carefully. The focus control was backed off

about the same distance for each alignment, and the X and Y
controls were set at random values. This procedure initial-

ized an alignment ((0, 0, G) in the previous paragraph).

Figures 7 and 9 show data for which the beam positions

were not measured so carefully. Hence those" data show more

scatter and required more steps per alignment than subse-

quent training sets. It usually is very easy to measure the

beam position in region A because the bright spot is typically

surrounded by diffraction rings (fig. 3). The only exception

is early in the alignment when the beam is faint and internal
reflections can be mistaken for the main beam. Beam coordi-

nates are sometimes difficult to define in region B. The

intensity distribution can appear to be fairly uniform yet not
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symmetrical. It can have a wispy texture. Sometimes, the
measurementof a beam coordinate is little more than a guess.

Most of the alignment steps occur in region A, but the com-

plexity of region B makes the spatial filter an excellent

benchmark component for testing neural networks.

We characterized the beam pattern by only 1 bit: a zero

for region A and a "1" for region B. There was little point in

using a more complex characterization in the absence of a

machine vision system. Future work will probably require

more complex characterizations, at least in region B, and per-

haps to handle internal reflections at the beginning of

region A.
The beam brightness was measured as follows. The 1-cm 2

sensor of a power meter was centered on the bright spot, and

the average power in microwatts per centimeter squared was
measured after each control action. The base-10 logarithm of

this power was used as the beam brightness in a somewhat

rudimentary attempt to emulate an operator's visual response.

The brightness was then renormalized easily for different

laser powers and for different distances of the reflecting card.
There was no attempt to anticipate the consequences of the

control actions. It is important to ask to what extent human

operators use a personal mental model of the alignment pro-
cedure to anticipate the consequences of their actions. As a

rule, the outputs of that model should be inputs to the neural

network. Expected consequences of control actions should

be investigated as an input for future research.

Now, consider the output vector. The control action to be

taken is again represented by a three-component vector. The

choices are (0, 0, 0) for no action (the appropriate choice

when the alignment is complete), (1, 0, 0) for operation of
the z-axis or focus control, (0, 1, 0) for operation of the pin-

hole's x-axis position control, and (0, 0, 1) for operation

of the pinhole's y-axis position control. The only character-
istics to be set are the x and y coordinates of the beam's

bright spot. This choice is certainly adequate for region A;

region B alignments eventually might require setting some
beam pattern parameters. Typically, the human operator

zeros x or y when the x ory control action is selected. Both x

and y are allowed to increase when the focus or z-axis control
action is selected. They are allowed to increase Until the dis-

tance of the beam bright spot from the center reaches a maxi-

mum permissible value; that maximum is the output value

when selecting the focus control.
Beam brightness is the only characteristic to be estimated.

That characteristic was fed back as an input during Simulated

alignments:bf t_e spatial filter, whicll_required a model-

generated choice for the beam pattern.

The design of a training set record is then summarized as
follows. There is a seven-component input vector consisting

of three previous-control-action nodes, two beam-coordinate

nodes, one beam-pattern node, and one beam-brightness
node. There is a five-component output vector consisting of

three control-action nodes, one beam-position node, and one

beam-brightness node. A training record then contains

12 elements, and training records are sequenced to form

an alignment. Alignments are executed from random

starting positions to form a training set.

Two slight modifications of this design were investigated:

(1) a training set where the change in brightness was used in

place of the brightness and (2) a training set where the beam

brightness and beam coordinates were made dimensionless.

Dimensionless training sets.- Human operators can align

spatial filters for different gaussian beam parameters, laser

powers, distances of the viewing card, microscope objectives,

pinhole diameters, and mechanical designs of the spatial filter

assembly. The dimensionless training set is a very primitive

attempt to emulate this generality. Learning the general pro-

cedure by example is the ultimate goal.
The beam incident on the viewing card is approximately a

single spatial and single temporal eigenmode of the electro-

magnetic field. Generic eigenmodes are represented in terms
of a limited number of variables, and these variables can be

made dimensionless. Unfortunately, the spatial mode

changes during the alignment process. Dividing the align-

ment process into two regions called A and B in appendix A

greatly simplifies describing alignments, but changes still are

particularly noticeable in region B.
There is not a unique dimensionless training record. The

region A and region B models were used to guide the cre-
ation of the following particular example. The dimensionless

variables differ between regions A and B. Control identifica-

tions, such as (0,1,0) are unaffected, of course. The 1-bit

identification of the beam pattern also is unaffected. The

position coordinates X, Y are replaced by

xf
and ,--=-----7 in region A

(Zws) tzws)

and by

in region B

The dimensionless coordinates for region A follow from

the geometrical optics interpretation discussed in appendix A.

The coordinate is essentially the angular location (X/Z, Y/Z)

of ihe bright spot normalized with respect to the polar angle

(ws/f) of the 1/e 2edge of the beam. The square of this coordinate

also is the argument of the exponential in equation (A13) in

appendix A after applying the region A assumptions to that

equation. The geometrical optics interpretation does not
depend on the wavelength; therefore, the wavelength does

not appear in the definition of the dimensionless coordinates

for region A. The coordinates refer to a single point (the
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positionof thebeambrightspot);therefore,D also does not

appear in the definition. The pinhole diameter D does affect

the spread of the diffraction ring pattern about the bright spot.

The dimensionless coordinates for region B are based on

equation (B6) in appendix B, but are not as easy to define

because the shape of this mode varies significantly. The

dimensionless groupings in the exponential and in the terms

following the exponential are different. The position of a

bright spot, if one occurs, will be determined by the brack-

eted terms. This suggests using the definition

x, = (zi2x  tf2r ]
) (16)

Brightness is a sum of the logarithms of factors such

as those in equation (A13) or (A15) in appendix A or in

equation (B6) in appendix B. Hence, normalization (or

renormalizatjon) is accomplished by subtracting these loga-
rithms expressed in dimensionless variables. The first step is

to express the beam power P in terms of the maximum axial

intensity at the reflectifig Card. The intensity averagedover
the 1/e 2 diameter also could be used, but the effect is constant

and not important in dimensional analysis. Equation (A2) is
used for this purpose by substituting

Z in place of _z

The result is given by

D - ws (18)
dx = _ and Wf -

These transformations are done on the experimental train-

ing set; then the transformed training set is used to train the

neural network. The neural network is interrogated by trans-
forming an input vector, presenting it to the network, and

performing the inverse transformation on the output vector.
In addition, scaling transformations can be performed to use

the full dynamic range available from the networks. These

activities were performed by C-language functions, and the

results were stored internally.

Experimental Procedure for Neural-Net-Directed
Alignments

Apparatus and software.-The experimental setup con-

sisted of the beam-smoothing spatial filter (figs. 1 and 2) with

two combinations of the microscope objective and pinhole; a

helium-neon and an argon ion laser together with mirrors to

direct the laser beams to the spatial filter; a diffusely reflect-

ing card with crosshairs for observing and centering the pat-

terns of the laser beams; a power meter for measuring the
average beam power; several experimentally generated train-

ing sets, which were produced by Kenneth E. Weiland (one

of the authors); commercially supplied neural network hard-

ware and software (refs. 5 to 6), and an AT microcomputer.

Figure 10 is a photograph of the experimental setup. Most of

the experimental work was done with the second package

(ref. 6) of hardware and software. That package included a

coprocessor that was installed in a PC/AT microcomputer.

_2P _ /_V_max (17)
Zws_

f

This result is substituted in equation (A13) or (A15).

These equations are affected by the mechanical misalignment
variables that are unknown during the formation of a training

set. In particular, w' depends on 8z. If we choose 5z = 0 to

form a dimensionless parameter, the quantity to be subtracted

from the brightness elements in the experimental training sets

is then given by

where
Figure 10.--Typical experimental setup for acquiring training

sets for the spatial filter alignment.
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The package could be accessed at three levels: a menu-

driven level, a C-language function level, and a compiler

level. The menu-driven level supported two algorithms for

learning mappings: BPN and CPN. The C-language func-

tion level supported 17 algorithms. It also could operate

systems of neural networks by passing the outputs of one net-

work to the inputs of the next. The compiler could create
new neural-network architectures. All three levels were used,

but most of the data reported herein were collected using the

C-language function level.

The package identified in reference 5 also was used to

create systems of neural networks. This package relied

entirely on software, and it required long training times.
Nevertheless, its trained systems of neural networks per-

formed as well as those of the other package. The refer-

ence 5 package also offered a different viewpoint. Recall

that the nonlinear activation functions of networks internally

generate the degrees of freedom needed to handle the map-

pings. In contrast, the reference 5 package can perform non-

linear operations on the input vector and supply the results of

these nonlinear operations as additional inputs. In some

cases, a mapping can be learned by a single-layer network

when this procedure is used (ref. 4).

The experimental procedure is straightforward: select a

format for the training set members or records, execute a
large number of alignments recording the training set record

at each step, select a neural network or combination of neural

networks to learn the training set, execute the training algo-

rithm for the neural networks while monitoring some

measure of learning success, note the difficulty and time for

training, and test the effectiveness of training by using the

neural networks to direct the alignment of a spatial filter. The

experimenter also must learn the architectures and program-

ming languages for the neural computers.

This report discusses neural-network-directed, alignments.

In other words, the trained neural network was used to pass

alignment instructions to a human operator. The human
operator executed the instructions and then passed a vector of

inputs back to the neural network. The neural network then

generated another instruction. This experiment is not a

neural-network-controlled alignment of the spatial filter.

Neural-network-controlled alignments of the spatial filter,

with actuator-driven degrees of freedom, are, of course, the

real goal of the overall research and development effort.
Neural-network.directed alignments of a spatial

filter.- Two kinds of experiments were conducted: neural-

network-directed alignments of actual spatial filters and

neural-network-controlled alignments of a model spatial fil-

ter. The configuration of the neural network and of its

parameters were determined by the designer who monitored

its learning progress.
Neural-network-directed alignments were performed on

the same setups used to create the alignment records for

training. The same person who created the training sets also
executed these alignments as directed by the system of neural
networks.

In preparation for the experiment, the spatial filter was

aligned carefully. Then, the focus was backed off typically
about 700 to 900 grn, and X and Ywere randomly turned.

The misadjustments of X and Ywere not so large as to make
the beam invisible.

The beam characteristics and previous history were speci-

fied, measured, and used to create input vectors as described

in the Training set design for optical alignment section. The

input vector was then relayed to the computer operator who

then entered the input vector. The AT computer contained the

neural network coprocessor (ref. 6) and its software (refs. 5

and 6). Generally, the system of neural networks responded

immediately with an output vector. Occasionally, an input

vector could not be classified at the same level of vigilance as

was used to prepare the training sets. Then it was necessary

to reduce the vigilance slightly to force classification and

routing of the input vector to a mapper. The output instruc-

tions were then relayed to the person performing the align-
ment as follows:

(1) The control to be operated (Z (focus), X, Y, or none)

(2) If control = X, the new x position

(3) If control = Y, the new y position

(4) If control = Z (focus), the new distance from the center

The control to be operated was selected by rounding off

the first three components of the output vector. The largest

value >__0.5was rounded up to 1.0. A tie was settled by

rounding Z first and X second. All other values were equated
to 0.0. The predicted brightness was recorded for compari-

son with the actual brightness. The predicted brightness was

not used by the person performing the alignment.

The focus adjustment sometimes required a modification

of these output instructions. This modification decreased the

value of the experiment because it required interpretation

after the training was completed. When Z (focus) was

adjusted, the beam could not always be forced to the distance
indicated by the output vector. Hence, action on step (4) of

the procedure was modified as follows:

(4a) If possible, the predicted distance was set.

(4b) If the brightness decreased too much, the distance at

which the beam was barely visible was set.

(4c) If the brightness increased without the predicted
increase in distance, the distance at which the beam stopped

brightening was set.

The person performing the alignment executed the instruc-

tions and then measured a new input vector. Sometimes,

photographs were recorded of the card reflected beam. This
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procedurewascontinueduntilthesystemofneuralnetworks
issueda"halt" or "all-done"outputvectordefinedby
(0,0,0)in thefirstthreecomponents.

Thepersonexecutingtheinstructionsdesignatedthebeam
asregionA or B and measured the position of the beam

bright spot relative to crosshairs.

The systems of neural networks also were used to align a

model spatial filter as discussed next.

Neural-network-directed alignments of a model spatial

filter.- Some versions of the software contained an option to

complete an alignment from an initial input vector. This

option was used to test the self-consistency of the system of

networks; that is, it determined whether a system of networks

would proceed to an aligned state on the basis of only a string

of its own input and output vectors. In contrast, the align-

ment of an actual spatial filter, as discussed in the previous

section, provided continuous corrections through remeasure-

ments of the input vector. A second application of alignment
completion was used to provide rapid visualization of an

alignment with the procedures discussed in appendix B.

For the self-consistency test, the output vector, the input

vecior, and a very coarse model were used to create a new
input vector. The following procedure was used:

(1) The first three components of the new input vector

were created from the first three components of the output
vector by rounding off as defined in the previous section.

(2) IfX was selected, the new X value and the old Y value

were selected for the next two components.

(3) If Y was selected, the old X value and the new Yvalue

were selected for the next two components.

(4) If Z (focus) was selected, then the old X and Yvalues

were multiplied by the new distance from the center divided

by the old distance from the center, and the results were used

as the next two components.

(5) The beam pattern, given by the next component, was
determined from the brightness. Region B was defined to

occur with an output brightness greater than or equal to 3.39.

(6) The brightness in the new input vector was taken, of

course, from the last component of the output vector.
(7) The new input vector was used to plot the new beam

position and profile.
(8) The new input vector was sent to the system of net-

works for another iteration.

(9) The process was halted when the first three compo-

nents of the output rounded off to (0, 0, 0).

In step (4) there is a danger of division by zero. However, the

original training set and the model training set involved sufficient

errors in zeroing that division by zero never occurred.

Results and Discussion

Comparison of Training the Back-Propagation-Trained

Network and the Counter-Propagation Network

ART2 was used to preclassify the argon ion training set into

12 classes. These classes were then taught to both the back-

propagation-trained network (BPN) and the counter-propaga-

tion network (CPN). The entire training set was rendered
dimensionless, and the individual classes were rescaled prior

to training the mappers. Rescaling places elements of the vec-

tors in the range (-0.9, 0.9). The two architectures were

equally effective at learning these training sets as can be seen
by examining table III. Table III tabulates mean square errors

for each class for BPN and CPN. The mean square error is

measured after training by performing one more pass through

the training set.

Table IV lists the types of input vectors characterizing the

different classes of table III. The largest mean square errors

appear for the larger classes where X or Ywas the control last

operated. Although the input vectors in a class are character-

ized by the same values of the first three components and of
the sixth component, brightness and positions can vary sub-

stantially. The output vectors can vary in the control to be

operated, the brightness, and the position. Mappers are limited

by a statistically best performance. The fact that two com-

pletely different forms of mappers achieve the same perfor-
mance indicates that this limit has been reached.

BPN and CPN learned the class training sets equally well;

they can be compared according to other criteria. Both net-
works were trained with 12 000 iterations (passes through the

TABLE III. - COMPARISON OF BPN WITH

CPN: DIMENSIONLESS AND RESCALED

ARGON-ION TRAINING SETS

Class Number of

training

records'

1 50

2 50

3 51

4 49

5 40

6 39

7 41

8 3

9 5

10 5

11 6

12 2

Mean square error

BPN BPN

0.006006 0.004297

.079269 .072757

.120310 .123502

.008547 .002877

.062840 .084559

.009437 .000000

.098409 .090904

.0000_ .000000

.000001 .000000

.082420 .081007

.000002 .000000

.000000 .000000

aEach training rccord consists of one input and onc output

vector.
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TABLE IV. -- CHARACTERIZATION

OF TRAINING CLASSES FROM

TABLE Ill: DIMENSIONLESS

AND RESCALED ARGON-ION

TRAINING SETS

Class Number of

Iraining

records a

i 50

2 50

3 51

4 49

5 40

6 39

7 41

8 3

9 5

I0 5

11 6

12 2

Mean square e_or

BPN BPN

NONE A

Y A

X A

Z A

X A

Z B

Y A

2 B

X B

Z B

Y B

Z B

• Each training record consisls of one inpul aad one outpul

vcctor.

training sets). The training of CPN was faster, but it required

more frequent adjustments of parameters. The CPNparam-

eters (Kohonen learning rate, a parameter called the bias
multiplier, and the Grossberg learning rate) (ref. 6) were

adjusted six times during training. The BPN parameters were

adjusted three times. CPN must be large for large training sets,

whereas the size of BPN does not change. All the BPN nets

had 7 input nodes, 14 nodes in one hidden layer, and

5 output nodes. The CPN network used to learn the third class

contained 2548 bytes. The total sizes of the network files for

the third class contained 1744 bytes for BPN and 4260 bytes

for CPN. One advantage of CPN is its large number

of Kohonen nodes: accuracy increases as the number of

active Kohonen nodes increases. CPN requires somewhat

arbitrary choices of the number of Kohonen nodes to use for

interpolation and of the value of the interpolation exponent r.
The relationship between accuracy and the number and sizes

of hidden layers in BPN is difficult to discern.

Alignment Tests With Neural Network Systems

The test of a trained system of neural networks was
whether that system could direct the alignment of a laser-

beam-smoothing spatial filter. The results of such tests are

discussed in the following section.

The objective for this work is to automate the alignment

and operation of optical measurement systems in inaccessible

aerospace environments. The only acceptable test, therefore,

is to demonstrate alignments of optical components. The fol-

lowing alignment test is representative; it shows some prob-

lems and indicates clearly the required direction for future
work.

The system tested was used to generate tables III and IV.

Figure 11 is a photographic record of the alignment test

(ref. 2) that was recorded with the version of the system that

used CPN as a mapper. A neural network system consists of

a preclassifier and about 10 mappers. CPN was used with the
interpolation technique discussed in the description of the

CPN earlier. Up to six Kohonen nodes were allowed to par-

ticipate in determining the output where the interpolation

exponent was r = 2. These values were chosen by trial and
error tests on the original training set. BPN mappers, which

also successfully directed the alignment of the spatial filter,

do not require these adjustments.
Table V lists the neural net alignment in training set form.

There are three differences between the form of this table and

the form of the typical training set. First, the beam pattern is

listed as "A" or "B" for region A or B rather than as "0" or

"1." Second, the brightness in the output vector generally

differs from the brightness in the subsequent input vector.

The output brightness is predicted, and the input brightness is

measured. Third, the distance predicted for an adjustment of

Z(focus) may not equal the distance achieved because of

limitations in the apparatus as discussed in an earlier section.

Table V can be compared with figure 11, but the following

comments must be kept in mind. Figure 11 contains an

imaging reversal: right is interchanged with left and top is

interchanged with bottom. In addition, saturation makes it

difficult to show the bright spot; therefore, the beam may

appear to be off center when the bright spot is actually cen-
tered. The center of an image must be overexposed to bring

out the ring pattern. The region A versus region B judgment
was made by the human operator actually executing the

alignment instructions. The same human operator recorded

the training sets as stated previously. The person operating

the computer and relaying the instructions was in a different
room.

Figure 11 is to be read in television raster fashion from left

to right and top to bottom. The first three frames of fig-

ure 11, representing the first three lines in table V, clearly are

region A patterns. Multiple diffraction rings are visible in all
three frames. The broken appearances of the diffraction rings

may be caused by spatial variations in the sensitivity of the

film used to record the photographs. They also could be

anomalous diffraction effects from dirt or pinhole imperfec-

tions, because the simple theory applies to a perfectly circu-

lar, undamaged, clean pinhole.

The operator classified the next two frames as region A

frames also. However, the photograph shows them to be

region B frames. Nevertheless, the system of neural net-
works could order essentially correct moves in spite of the
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Figure 11 .--Photographic record of neural-net-directed alignment of spatial filter.

TABLE V.- NEURAL-NETWORK-DIRECTED ALIGNMENT IN TRAINING
RECORD FORM FOR ARGON-ION TRAINING SET AND CPN MAPPERS

Input

Control Position Pattern Bright-

(Z, X, Y) x y (region) ness

0 0 0 -20.0 -14.0 A -0.744
0 1 0 .0 -14.0 A .602

0 0 I .0 .0 A 1.415

I 0 0 6.0 .0 A 3.415

0 1 0 .0 .0 A 3.613
1 0 0 .5 .0 B 3.602

0 ! 0 .0 .0 B 3.633

Output

Control Position Bright-

(Z, X, 10 (x. y, or hess

distance)

0 I 0 0.0 0.560
0 0 1 .0 !.338

1 0 0 16.0 1.810

0 1 0 .0 3.504

1 0 0 .0 3.585

0 1 0 .0 3.556
0 0 0 .0 3.574

pattern error. A system of neural networks trained with an

earlier training set did not incorporate pattern information,

yet it could direct complete alignments in many cases. That

system, however, would occasionally get stuck between two

states and oscillate back and Iorth between them, with some

states in between. It turned out that the second state was

one of a pair of states that had identical input vectors. One

state of this pair produced a region A pattern and the other a

region B pattern. Treating these patterns as identical caused

the system of networks to direct the alignment back to an

earlier state rather than to an aligned state. Hence, we

decided to incorporate 1 bit of pattern information, leading

eventually to the region A, region B theory.

There are two points to be made from the preceding dis-

cussion. The first is that a serial alignment process appears to

be robust in the sense that occasional errors and bad deci-

sions do not destroy the whole process. The second is really

the main point of this whole report: neural nets are intended

to learn by example. They are adapted to learn craftsman-

ship rather than academic knowledge. The need to make

judgments on the basis of physical theories must be regarded

as a defect, and the only way to avoid this defect is to acquire

a training set for a complete system. A complete system for

the spatial filter would consist of a machine vision system

based, for example, on a charge-coupled device (CCD)

camera and frame grabber togetherwith eiectromechanical

actuators. A compl&e system would record a training set of

input-output vectors without substantial intervention by the

operator. The operator's only contribution would be skilled

example.

lncidently, a model trained neural network also was fairly

successful at directing the alignment of the laser-beam-

smoothing spatial filter.

Table VI contains an alignment sequence in which BPN

was the mapper. The alignment with BPN started from the

same point as with CPN and followed nearly the same path.
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TABLEVI.- NEURAL--NETWORK-DIRECTEDALIGNMENTIN TRAINING
RECORDFORM FOR ARGON-ION TRAINING SETAND BPN MAPPERS

Input

Control Position Pattern Bright-

(Z,X, Y) x y (region) ness

0 0 0 -20.0 -14.0 A -0.744
0 1 0 .0 -14.0 A .602
0 0 1 .0 .0 A 1.415
0 0 1 6.0 .0 A 3.415
0 l 0 .0 .0 A 3.613
1 0 0 .5 .0 B 3.602
0 1 0 .0 .0 B 3.633

Output

Control Position Bright-
(Z,X, Y) (x,y, or Bess

distance)

0 1 0 0.0 0.442
0 0 1 .0 1.354
1 0 0 16.0 1.892
0 1 0 .0 3.584
I 0 0 .0 3.594
0 1 0 .0 3.570
0 0 0 .0 3.570

The result in the previous section was that BPN and CPN

learned the 12 sets of training vectors equally well. The most

noteworthy observation is that line 4 of table IV contains

an experimental error. In this line, Ywas entered as the last

control operated rather than Z, as indicated by the previous

output vector. The BPN network, which was erroneously

consulted, still directed the correct move. The argon-ion

trained network was trained to precisely zero x or y whenever
one or the other occurred with a nonzero value. The helium-

neon training set is different. That training set was originally

constructed by measuring errors in the mechanical drives
for each alignment step. Crosshairs were not used to zero
the beam coordinates.

Figures 7 and 9 were constructed from this original train-

ing set. Later, the beam coordinates were recovered by mak-

ing a second pass through the training set. The precision of

that procedure was limited, because of the nonlinear effects

in the mechanical drives. The helium-neon training set gives

results closer to human alignment, yet it is less efficient.

Another point is that CPN learned the helium-neon training

set better than BPN. With CPN, we can choose any number

of Kohonen nodes, up to the maximum. In effect, we can
have one node for each training entry. Generally, we n_ed

Kohonen nodes equal to one-third or more of the training
entries.

Concluding Remarks

An important conclusion drawn from this work is that a

neural-network-controlled alignment process should be
trained and tested in its entirety. Ideally, the environment for

training and testing will be the environment for the final

application. Training and testing should be nonverbal. The

alignment expert should view the light pattern on a monitor

attached to the machine vision system used by the network.

The alignment expert should perform alignment actions via

the actuators used by the network, and the training set should

be recorded automatically. Then the trained system should be
tested by how well it completes alignments without human

intervention. Any procedure that programs a network with

weights learned in a laboratory is a weak procedure.

The neural-network-directed alignments of the spatial fil-

ter described herein do not meet this standard. The training

sets were designed to be recorded by the alignment expert,

and they incorporated the human expert's interpretation of

the beam pattern. The alignment tests also required human

interpretation and human translation of the output vectors
into mechanical actions. The discussion of tables V andVI

shows how imperfect interpretations can be.
Nevertheless, the neural-network-directed alignments pro-

duced some important conclusions and some motivations for

additional work. The approach mandated in the first para-

graph of this section is one conclusion. Another conclusion

is that neural-network-controlled sequencers are very robust

in the sense that they tolerate mistakes. The alignment path

has an excellent chance of recovering from an erroneous

move and proceeding to an aligned state. This single prop-

erty is a good reason for continuing the development of

neural networks for alignment.

This work also points out the importance of adaptive sys-

tems. The long-range goal for such systems is the control of
adaptive optics. A more realistic near-term project is to

develop and test a system to correct for misalignment

induced by the environment. Vibrationally induced misalign-

ment is an example. This project is consistent with the pro-

gram objective of automating alignments in remote, harsh,

and dangerous environments and can probably be demon-

strated with conlmercially available equipment. The objec-

tive is quite different from the spatial filter alignment

discussed in this report. The alignment of the spatial filter
requires proceeding in steps from a misaligned state to an

aligned state. The adaptive system would need to learn,

detect, and correct for transitions from aligned to misaligned
states.

The adaptive resonance theory (ART) discussed in this

report is one system for using unsupervised learning to detect

and classify new states of misalignment. Learning to respond

correctly to these new states of misalignment is the essence

of adaptation. This type of learning is one step removed
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fromthetrainingalgorithmsalreadydiscussed.Essentially,
thesystemof neuralnetworksmustlearnhowtolearnthe
correctresponsetothemisalignment.Thetextbookapproach
istohaveaseparatenetworkthatcontainsandimplementsa
modelof learning.Aprimitiveapproachmightconsistof
interruptingtheexperimentwhenanewstateisdetectedand
classified.(Asdiscussedinthisreport,ART2doesthisauto-
maticallyviathevigilanceparameter.)A human operator
would then teach the networks a correct response, and the

experiment (actually the network development) would con-

tinue. As mentioned, some people_consider the creation of

full adaptation to be the most important area for research.
The use of neural networks to compensate for environmen-

tally caused misalignment in a component used in the field
would be an ideal demonstration project.

This is a very appropriate point to recite some conclusions

about the current resources for implementing neural net-

works. The current software and hardware are slow, and they

have comparatively small memories (in relation to their

human operator counterparts). The project suggested in the

previous paragraph might require or benefit from some cus-

tomized, front-end hardware for rapid acquisition and classi-

fication of misalignment states. It is a mistake, however, to

claim that present neural network demonstrations are not real

because they use digital computers. The neural network
architectures are quite real, but the d!gital computer cannot

take advantage of the ability of groups of identical neurons to

be updated at the same time. The digital computer essentially

updates these neurons one at a time. The conceptual diffi-

culty is easily eliminated by recognizing that true neural net-

works also update neurons one at a time, if a short enough
time interval is selected. Certainly, neural network applica-

tions will benefit from the development of parallel hardware.

The comparison of BPN and CPN suggests some interest-

ing conclusions about resources and technologies. CPN is
fully equivalent to table lookup when the number of

Kohonen nodes or neurons equals the number of entries. The

Grossberg layer performs weighted interpolation. CPN per-
formed as well as BPN for the relatively small training sets

that were used for the experiments.
The advantage of CPN is that the number of weighted con-

nections increases in proportion to the size of the training set,

whereas the number of weighted connections, in BPN

increases in proportion to a power of the size of the input
vector. This effect did not create a problem for the seven-

element input vectors used for the spatial filter alignments. It

certainly will create a problem for input vectors containing
tens of thousands of elements, as discussed in connection

with the use of neural networks for processing optical data.

One conclusion is that CPN is the network of choice for

small data sets. A more important conclusion is that table

lookup may be a significant, superior alternative to neural

networks for a long time. Large memories are becoming

inexpensive and algorithms such as CPN are available for

learning and organizing tables. The role of table lookup in

mapping and directing the alignment of spatial filters was
discussed with figures 7 and 9. Effective competition from

existing technologies is always a factor in developing new

technologies.
Neural networks should have a significant role in process-

ing_opticai data. A nonlinear network has the ability to

reconstitute a compressed data set. In effect, feed-forward

networks have unlimited internal degrees of freedom that can

store and resupply missing data, provided that the data can be

reconstituted by some definite rule. The neural network, of

course, learns the rule implicitly, transparently, and by

example. It will simply classify the inputs in the Bayesian

sense, at best, if it cannot discover a rule. Neural networks

offer an efficient way to study data compression. The payoff

can be enormous in the aerospace field. A current system

uses holograms that must be recorded through windows. The

hologram must be processed; then the information is meas-
ured comparatively slowly from 29 different views. Adata

compression to three views, followed by reconstitution,

would allow holography to be replaced by high-speed elec-

tronic interferometry. The retention of all the views, but with

a few measurements per view, would permit the use of fiber-

optic interferometry, thereby eliminating the need for win-
dows and solving the optical access problem in the aerospace
field.

Finally, a fully automated spatial filter alignment must be

demonstrated. Neural networks are indeed the expert sys-

tems of craftsmanship. They learn by example. Only the

complete system can avoid the need for the verbal intercourse

that spoils this example learning. A person with an optical

systems background will feel very comfortable with neural
networks. It works very well for pattern-based processes, is

well constructed for research in adaptive optics, and has

potential for processing optical data. The development of
supporting technologies and competition from existing tech-

nologies will set the timetable for applications of neural
networks.

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135, May 1993
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Appendix A -Theory and Models for

Beam-Smoothing Spatial Filter

The derivation of the Fresnel diffraction theory (ref. 22) of

the beam-smoothing spatial filter is straightforward, but the

theory is hard to use for calculations. This difficulty should

not be surprising because the patterns observed in the step or
two before alignment is achieved are complex. In this appen-

dix, the diffraction theory is used to generate easy-to-handle

approximate models of the alignment of a spatial filter. This

appendix has three sections: the general diffraction theory of

the spatial filter, a model of the alignment process when the

filter is out of focus, and a model of the alignment process

when the filter is focused or nearly focused.

Fresnel Diffraction Theory

This discussion (fig. 12) assumes the use of a gaussian

laser beam (ref. 23) that is coaxial with the optical axis of the

spatial filter assembly. A thin lens of focal length freplaces

the microscope objective commonly used to focus the laser

beam, and aberrations are ignored. The pinhole, or spatial
filter, is assumed to be in the xy plane at z = 0. The center of

the circular pinhole is assumed to be misaligned with (x,y)

coordinates 8x and By, and the center of the beam waist is

assumed to be misfocused with the z-coordinate 5z. The
result of a successful alignment is to zero or nearly zero these

coordinates. The remaining parameters are the pinhole
diameter D, the distance (z-coordinate) Z at which the beam
pattern is observed or measured, and the laser-beam
characteristics.

The laser-beam characteristics are defined as follows. The

laser beam has a wavelength _, and a 1/e 2 radius ws at the lens

aperture, the beam waist appears at the focus at distance f

from the lens, and the vignetting effect of the lens is ignored.

The beam waist then has a 1/e 2 radius given by

V
w : _ (A1)

KW s

The beam power is called P.

We obtain a formal expression for the beam pattern by

mathematically propagating the beam to the pinhole, multi-

plying the pattern by the pinhole aperture function, and then

mathematically propagating the apertured beam to the view-

ing plane at distance Z. Constant phase factors are not

retained because they cancel in evaluating the intensity.

The field at the pinhole plane z = 0, minus constant phase
factors, is given by

1 e_ap2u(p) = w---7 (A2)

where

1 12 jR (A3)A = _ ,;tR

.,'= w l+t, aw2) (A4)

L (A5)

p2 = x 2 + y2 (A6)

COORDINATES OF

FILTERED BEAM BRIGHT SPOT
LASER BEAM PINHOLE ON CARD /

, -.,®
,

] OF BEAM WAIST _ !v v
/ I I %'_LI "1

b,gl-- f---i.- / I .................................

---'i_ A _ OF PINHOLE
I--

_ [ CROSSHAIRS
MICROSCOPE _ _z _ _ Z y_

OBJECTIVE MIS_CUS DISTANCE OF WHITE

CARD

Figure12.--Simplified diagramof spatial filtersetup.
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This field (eq. (A2)) is multiplied by a circular aperture

function C(x - 8x, y - By) that is centered on the pinhole and
is unity inside the pinhole and zero outside the pinhole. The

Fraunhofer diffraction integral is then used to represent the

field at the observation plane. Capital letters X, Y, Z represent

the coordinates of the observation plane. The scalar field in

the observation plane is then given by

U(X) = :2P 1 1w j-o-A:

where

x C(p -8)e-J(2n/Xz)(xP)dP

p = (x,y) (A7)

a = (G,as)

x = (x,v)

Equation (A7) is evaluated in part by applying the shift
and convolution theorems of Fourier transformations

(ref. 22). The result is given by

[2._P 1 1 n'D f e-J 2xF''6
U(X) =_ 7r w' 2.Z 2AJ

×
Jl (ffF'D)

P

e- (: /A)(v- F') dr (as)

1 1 _2D e-(n2/A)F 2U(X) = -- w-"7 "LZ a

** 2

i n Io(BF')JI(nF'D ) dF"
X e -( /A)F'2

0

(A9)

where

8_ 3
t n4 F 2 4n2(5 2 j d.F

The symbol In represents a modified Bessel function where

lo(x) = Jo(jx). The exponential preceding the integral sign

represents the beam profile in the absence of the filter. The

integral itself is interpreted as a beam-profile, beam-position
modification factor; it represents the main effect of filter mis-

alignment.
The integral in equation (A9) can be evaluated formally,

and the result is given by

t2P 1 1 x.D2 e_(n2/A)F2_o 1 (n2ml mU(X) = w' XZ 4 _.t _4n2)
= "

(AIO)

where

where

X
F = --

),2

= Ill

The symbol Jn represents a Bessel function of the first kind

of order n. Integrals are evaluated over the entire domain of

the variable of integration.

Equation (A8) can be evaluated formally with the assis-
tance of a table of integrals (ref. 24). The first step is to inte-

grate with respect to the polar angle. The result is given by

Cm I-- 12/

= 1 + E i!(i + l)!(m- I)! _._) (All)
i=1

Equations (A1) to (All) represent the diffraction theory of

the process of aligning a spatial filter. It is more convenient

in this report to use approximate models based on the theory.
The model discussed next represents the alignment process

when the filter is well out of focus.
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Region A Model - Filter Out of Focus

Most alignment steps occur when the spatial filter is sub-

stantially out of focus. For example, for typical values,

f= 8,300 _un

;t = 0.5145 ban

ws = 1,750 lain

the beam 1/e 2 diameter will exceed a typical pinhole diam-

eter of 10 lam when _ = 20 lam. Because the misfocus can

be as large as 1000 gm at the start of an alignment process,

the beam diameter can exceed the pinhole diameter over

98 percent of the focus adjustment range.

A model of this region can be generated with equa-

tion (A7). First the equation is transformed to the center of

the pinhole, and then the remaining quadratic exponential

under the integral is assumed to deviate negligibly from 1.0.

The resulting integral is easily evaluated to yield the follow-
ing result:

__ 1 1 D e_A82U(X) = w' AZ 2

(A12)

The model is especially simple if the imaginary terms in

the argument of the Bessel function and in the denominator

of equation (A12) are ignored. The result is given by

( ztDl_Z

7rD2 e -At52 2JIL- _--_-- X]
U(X) = w' ,_Z 4 zD

(A13)

Choosing R = 8z produces an especially simple result. The
center of the diffraction ring pattern is then located ;it

&,
r = ---z-"z (A14)

gz

This center is exactly that determined from geometrical

optics by drawing a line from the center of the waist, through

the center of the pinhole, to the observation plane.

Equations (A13) and (A14) define the region A model for

a beam that is out of focus. It is equally easy to produce a

model when the beam is nearly focused. That model is dis-
cussed next.

Region B Model--Filter Focused or Nearly Focused

The model is developed directly from equation (A9). As

stated, the exponential in front of the integral is the beam

profile with the pinhole removed, and the integral can be

thought of as a shape modification factor. In region B, I0 is

assumed to vary slowly in comparison with Jl. It is removed

from the integral with an argument evaluated at the first

maximum of Ji, which occurs at

7tDF' = 1.8

The integral remaining is approximately DA/4n, and the

overall result is given by the equation

1 1 3zD2 _(rt2/A)F2[ (1.8B'_U(X) = w' $Z 4 " o_ zD )

(A15)

The I0 in equation (A15) constitutes a complex shape func-
tion and also permits the intensity maximum to occur off

axis as is sometimes observed in region B. Equation (A15)

is the region B model.

The models, like the diffraction theory, are approximate.

Criteria for switching from region A to region B are some-

what arbitrary. Nevertheless, neural networks trained with

these models perform well.
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Appendix B- Visualization of Spatial

Filter Alignment

A person who aligns a spatial filter looks at and is guided

by the diffuse reflection of the filtered and diverging laser

beam. The subjective appearance of that beam depends on

the beam shape and beam parameters discussed in appen-

dix A. The appearance also depends on the beam power, the

properties of the diffuser, room lighting, and nonideal effects

such as escaping reflections that originate inside the filter

assembly.
Similar comments apply to any other visualization method

such as a camera and a monitor. Definite, although occasion-

ally erroneous, decisions must be made on the basis of such

subjective visualizations. This alignment example requires

that the observer (human or mechanical) decide on a value of

beam position, on whether the beam pattern resembles the

region A model or region B model, and on some estimate of

brightness. Even the choice of the position of the diffuser is

a somewhat arbitrary decision.
The interpretation of visual information is a good subject

for neural networks. The work reported in this report used
visualization for demonstrations only; standardization was

used to reduce arbitrariness.

Standardization

The standardization is defined as follows:

(1) The beam pattern shall be presented in a 32- by 32-

pixel format.
(2) The unfiltered beam shall be centered in the 32- by 32-

pixel window when the spatial filter (pinhole) is removed.

(3) The overall magnification of the beam recording sys-
tem shall be set such that the 32- by 32-pixel window is 4w'
on a side, where w' is the 1/e 2 radius of the unfiltered laser

beam.

(4) The value of a pixel shall be based on the logarithm of

irradiance (intensity) or a corresponding photometric quan-

tity. The radius w" in item (3) can be estimated by replacing

8z in equation (A4) with Z, which is the distance from the

aligned pinholeto the diffuser.

Example of Visualization Process

There are many ways to display the beam pattern in a man-
ner consistent with the standard described in the previous

section. The following method was used to display a sche-

matic representation of the filtered laser beam during neural-

network-directed alignments of the spatial filter.

A C-language function was created to be used with EGA

graphics software. The function was designed either to plot
an externally supplied 32- by 32-pixel array or to compute

and plot such an array from a seven-element input vector of

the kind discussed in the Development of Training Sets
section.

Inputs to the function were (1) a pointer to the seven-

element input array, (2) a pointer to the array of pixels,
(3) the 1/e'radius ws of the laser beam at the lens, (4) the

wavelength 3.of the laser beam, (5) an estimate of the maxi-

mum logarithm of intensity encountered during the align-

ment, (6) an estimate of the minimum logarithm of intensity

encountered during the alignment, (7) the distance Z to the

diffuser, (8) the diameter D of the pinhole, (9) the focal

length fof the lens, and (10) a flag indicating whether the

array of pixels was to be supplied externally or calculated

internally.
Element 5 of the input vector (in C-language, the first ele-

ment is indexed as zero) decided the form of the internal cal-

culation if one was called for. Equation (A13) in appendix A

was adopted if element 5 = 0, indicating a region A pattern of

rings. Positions on the diffuser were expressed in units of Z,

and the 1/e 2 radius ws was made dimensionless in units of]',
as in

w f = w.--2-s (B1)
f

The pinhole diameter D was made dimensionless in units of

wavelength ;_, as in

D
= -- (B2)dx _.

The logarithm of intensity at the center of the pattern was
estimated as element 6. In the experiments, element 6 was

computed from an average intensity measured over a fairly

large detector size. The main effect of ignoring that fact is

equivalent to adding the same offset to all region A values.
The Bessel function was computed with a commercially

available software package. The 32-by-32 pixels were

stepped out horizontally and vertically from -2wf to 2w/in

the normalized x and y position variables.
A much more complex region B pattern must be calculated

when element 5 = 1. An already simplified expression for

this pattern is given by equation (A15) in appendix A. This

expression was simplified further to provide a convenient

expression for visualization. However, the dimensionless

groupings defined by equations (B1) to (B4) are applicable to
the full region A and region B models. These groupings also

suggest the training of neural networks using dimensionless
inputs. A dimensionless position and a dimensionless xy

misalignment are defined by the equations

X
X_ = -- (B3)

Z

and
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6
6 o = -- (B4)

D

Equation (A15) is replaced by a proportionality with the first

two terms of a small-argument approximation of the Bessel

function substituted. That proportionality is given by

I )[
where the assumptions near focus are

n _

1
A --4 --

w 2

w" -._ w

The proportionality expressed in the dimensionless vari-

ables of equations (B1) to (B4) is given by

IU(Xz) _ exp-

(B6)

The intensity for both regions A and B is proportional to the

field times its complex conjugate:

1(Xz) v" v (Xz)

The position of the beam bright spot (elements 3 and 4)

and the logarithm of intensity (element 6) are combined with

equations (B6) and (B7) to derive the components of 8.
These components of 8 are substituted in equation (B6), and

the array of pixels is calculated as for region A.

The array of pixels was represented on an EGA monitor by

associating a 4-by-5 array of screen pixels with each of the

calculated pixels. The four vertical pixels and the five hori-

zontal pixels correspond to the aspect ratio of the screen. The
actual emulation of the beam on the monitor is somewhat

arbitrary--the color (red, green, blue, or yellow) is chosen

from the wavelength. The logarithm of intensity at the beam

bright spot ranges between the minimum and maximum val-

ues supplied to the C-function; however, an actual camera

would have a variable iris whose setting might range from

fully opened at the minimum brightness to nearly closed at

the maximum brightness. The iris effect was inserted as a

brightness-dependent offset to the logarithm of the intensity

at the bright spot. The brightness of a calculated pixel was

represented by the number of screen pixels illuminated in the

4-by-5 representation of the calculated pixel. The iris correc-
tion and the order of illumination of the screen pixels were

adjusted by trial and error in an effort to create the visual

effect of an actual alignment of the spatial filter.

Final Comments on Visualization

The C-function just described takes many seconds to com-

pute and display a beam profile, in spite of the simplifica-
tions, standardization, and artistic license mentioned. The

fact that a beam profile can be represented with dimension-

less variables is the most important finding of appendix B. A

neural network trained with dimensionless inputs is intended

to work for any spatial filter and laser beam combination.
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Appendix C- Symbols o

Lengths, including wavelength, are normally expressed in
millimeters and occasionally in micrometers. Vectors and P

matrices are denoted by bold faced type. P(a/i)

A

a

B

b

b,

c( )

D

d_.

E

ei

F

V(a, b; c; x)

[

f_)

I

I()

6

/max

/o()

J.( )

N

area of iris aperture, or coefficient in sigmoid
function (eq. (15)), or complex coefficient in R

gaussian exponent (eq. (A3)), or in reference
2

to region A model R

input vector (eq. (2))

coefficient (eq. (A9)), or in reference to region r

B model

output vector (eq. (2)) Si

training vector (eq. (7))

circular aperture function s

diameter of pinhole (spatial filter) si

DI_. T

mean square error (eq. (3)) t

weight for Kohonen node i when CPN is used U

with interpolation U( )

(XIkZ, Y/LZ) u

hypergeometric function
u()

effective focal length of microscope objective W

mapping function (eq. (2))

another expression for input vector
w

irradiance or intensity function
W"

output of node ] w/

maximum irradiance in unfiltered beam as
measured at white card wij

modified Bessel function ws

Bessel function of the first kind and order n
X

number of training records

28

another symbol for output vector

probability density, or beam power

conditional probability or probability density

(eq. (9))

radius of curvature of gaussian beam wave

front (eq. (AS))

training record (I, T) where I is an input vector

and T is a training vector

exponent used in formula for calculating

weight factors when CPN is used in interpola-
tion mode

Euclidean distance between vector and grid

point i

weighted input at node

total weighted input at node i

training vector

time, or iteration index

vector of Grossberg weights in CPN

scalar field

mean value (eq. (8))

scalar field at pinhole (eq. (A2))

linear mapping or transformation matrix

(eq. (1)) or matrix of neural network weights

(eq. (4))

gaussian beam waist (eq. (A1))

gaussian beam 1/e 2 radius (eq. (A4))

ws//

weightatnode iforsignalfrom node j

l/e 2 radius of laser beam at microscope

objective

Cartesian x-coordinate of beam bright spot, or

x-position control on spatial filter assembly



X

Xz

x

Y

Y

Z

Z

7

(x/z, Y/z)

x-position in pinhole plane

Cartesian y-coordinate of beam bright spot, or

y-position control on spatial filter assembly

y-position in pinhole plane

Cartesian z-coordinate, or distance from

pinhole (spatial filter) to white card, or focus
control

Kohonen outputs in CPN

learning rate (eq. (10))

smoothing coefficient; replaces momentum

coefficient in one version of back-propagation

algorithm

momentum coefficient (back-propagation
algorithm)

5

5o

5i

P

(Y

II

<>

(ax,By)

8/1)

error used in back-propagation algorithm

(eq. (10))

x displacement of pinhole from optical axis

y displacement of pinhole from optical axis

focus error

wavelength of laser beam

correlation coefficient (eq. (8)), or vigilance

parameter used by ART2, or radial distance in

plane of pinhole (eqs. (A2) and (A6))

(x, y)

standard deviation (eq. (8))

absolute value or magnitude of enclosed terms

statistical expectation value of enclosed terms
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